MONDAY, JULY 1ST

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:00-2:30</td>
<td>Registration opens</td>
</tr>
<tr>
<td>2:30-4:30</td>
<td>Session 1: Chaired by Irving Aye</td>
</tr>
<tr>
<td></td>
<td>2:30 - Kathy Niakan: Introductory remarks</td>
</tr>
<tr>
<td></td>
<td>2:45 - Mana Parast: Stem cell-based modeling of the human placenta: Are we there yet?</td>
</tr>
<tr>
<td></td>
<td>3:15 - Hiroaki Okae: Human trophoblast stem cells: a powerful tool for studying placental development, function, and disease</td>
</tr>
<tr>
<td></td>
<td>3:45 - Margherita Turco: Understanding human placental development: insights from tissue-derived organoid systems</td>
</tr>
<tr>
<td></td>
<td>4:15 – Abstract-selected flash talks</td>
</tr>
<tr>
<td></td>
<td>#1 Sandra Haider: Characterization and in vitro modelling of trophoblasts and villous core networks of human first trimester placental cells</td>
</tr>
<tr>
<td></td>
<td>#2 Ida Calvi: Apical-out placental organoids as a model for studying syncytiotrophoblast regeneration</td>
</tr>
<tr>
<td></td>
<td>#3 Terezia Vcelkova: Function of MORC4 in trophoblast identity</td>
</tr>
<tr>
<td></td>
<td>#4 Ferring Pharmaceuticals (Gold Sponsor)</td>
</tr>
<tr>
<td></td>
<td>Kelle Moley (Global Medical Head, Therapeutic Area Reproductive Medicine): Partnering to advance innovation and improve patient lives</td>
</tr>
<tr>
<td>4:30-5:00</td>
<td>Break</td>
</tr>
</tbody>
</table>
5:00-6:30 Session 2: Chaired by Peter Rugg-Gunn
5:00 - Thorold Theunissen: Building 2D and 3D models of human trophoblast development from naive pluripotent stem cells
5:30 - Yasuhiro Takashima: Naive human PSCs model pre- to post-implantation development
5:45 - Thorsten Boroviak: Marmoset and human trophoblast stem cells differ in signalling requirements and recapitulate divergent modes of trophoblast invasion
6:00 - Abstract-selected flash talks
#5 Elisa Magistrati: A high-content imaging screen to identify maternal signals regulating trophoblast invasion during human placental development
#6 Ornella Elezaj: Unraveling Placental Diversity: Comparative Analysis of Placental Development across Species
#7 Jantine van Voorden: The Pro-Inflammatory Cytokines IFN-α and TNF-α Inhibit Extravillous Trophoblast Invasion
#8 Veronica Farmer: Investigating the temporal and spatial regulation of cell-cell fusion in the syncytiotrophoblast

5:00-6:30 Session 2: Chaired by Peter Rugg-Gunn
5:00 - Thorold Theunissen: Building 2D and 3D models of human trophoblast development from naive pluripotent stem cells
5:30 - Yasuhiro Takashima: Naive human PSCs model pre- to post-implantation development
5:45 - Thorsten Boroviak: Marmoset and human trophoblast stem cells differ in signalling requirements and recapitulate divergent modes of trophoblast invasion
6:00 - Abstract-selected flash talks
#5 Elisa Magistrati: A high-content imaging screen to identify maternal signals regulating trophoblast invasion during human placental development
#6 Ornella Elezaj: Unraveling Placental Diversity: Comparative Analysis of Placental Development across Species
#7 Jantine van Voorden: The Pro-Inflammatory Cytokines IFN-α and TNF-α Inhibit Extravillous Trophoblast Invasion
#8 Veronica Farmer: Investigating the temporal and spatial regulation of cell-cell fusion in the syncytiotrophoblast

6:30-7:30 Drinks and poster session
7:30 Conference Dinner

TUESDAY, JULY 2ND

<table>
<thead>
<tr>
<th>Time</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>9:30-10:40</td>
<td>Session 3: Chaired by Teresa Rayon</td>
</tr>
<tr>
<td>9:30</td>
<td>- Irene Zorzan: New approaches to study the regulators of human trophoblast development</td>
</tr>
<tr>
<td>10:00</td>
<td>- Yonatan Stelzer: A unified temporal model for mouse extraembryonic and embryonic development defines time and lineage-specific effects of BMP4</td>
</tr>
</tbody>
</table>

#12 Liseanne van ‘t Hof: The effect of co-inhibitory ligand expression by extravillous trophoblasts on conventional CD4+ T cell phenotype

10:40-11:20 Break

11:20-12:30 Session 4: Chaired by Courtney Hanna
11:20 - Martin Knoefler: Key regulatory roles of NOTCH and HIPPO signaling in human trophoblast stem cell expansion and differentiation
11:50 - Laurent David: Assessing stem cells models beyond transcriptome
12:20 - Abstract-selected flash talks
#14 Jinfeng Xu: Defining inflammatory cell states in Obstetric Anti-Phospholipid Syndrome by single-cell transcriptomic and organoid
#15 Giulia Avellino: ACLY Regulates the Metabolic Control of Histone Acetylation to Promote Human Trophoblast Stemness
#16 Malcolm Sim: The Trophoblast Immunopeptidome Project

12:30-1:30 Lunch

1:30-2:20 Session 5: Chaired by Claire Senner
1:30 - Irene Zorzan: New approaches to study the regulators of human trophoblast development
1:45 - Yonatan Stelzer: A unified temporal model for mouse extraembryonic and embryonic development defines time and lineage-specific effects of BMP4

2:20-3:20 Panel discussion: Chaired by Ashley Moffett and Alex Beristain
Evaluating current approaches to model the human placenta in vitro
Panelists: Mana Parast, Hiroaki Okae, Margherita Turco, Thorold Theunissen, Yasuhiro Takashima, Thorsten Boroviak, Hongmei Wang, Claudia Gerri, Martin Knoefler, Laurent David, Irene Zorzan, Yonatan Stelzer

3:20-3:30 Closing remarks and end of conference
Claudia Gerri

Dr Claudia Gerri is a group leader at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany. Claudia obtained her Bachelor’s Degree in Biological Sciences and Master’s Degree in Molecular Cell Biology at the University of Milan, Italy. In 2012, she joined the lab of Prof. Didier Stainier at the Max Planck Institute for Heart and Lung Research in Bad Nauheim, Germany. During her PhD, she studied vascular development and hematopoiesis in zebrafish embryos. She was awarded the Otto Hahn Medal from the Max Planck Society for her thesis. For her postdoctoral work in 2017, she joined the lab of Prof. Kathy Niakan at the Francis Crick Institute in London, United Kingdom. In her postdoc, she studied the mechanisms regulating trophectoderm fate initiation across different mammalian species: mouse, rat, cow and human.

Claudia obtained the free-floater Max Planck Society group leader position, and decided to establish her lab at the MPI-CBG in Dresden. The Gerri lab aims to understand how the environmental cues and the neighboring tissues influence cell differentiation in early embryos, and how placental progenitor cells interpret these signals and react, remodeling the uterine microenvironment. The lab combines approaches of comparative embryology with in vitro multicellular systems, with the final goal of investigating the different molecular and cellular strategies employed across evolution to instruct early cell fate decision and placental morphogenesis.

Dr Hiroaki Okae obtained his Ph.D. from The University of Tokyo, Japan, in 2010. Following that, he served as a postdoctoral fellow, Assistant Professor, and Associate Professor at Tohoku University, Japan, from 2010 to 2023. In 2023, he was appointed professor in the Department of Trophoblast Research at the Institute of Molecular Embryology and Genetics, Kumamoto University in Japan, where he leads a research laboratory.

Dr Okae established the first human trophoblast stem cell lines from human embryos and first trimester placenta. His lab is interested in using these models to understand placental biology and development and to develop new treatments for pregnancy complications.

Dr Irene Zorzian completed her undergraduate and master's degree in Molecular Biology at the University of Padova. Her fascination with developmental biology has underpinned her academic career choices from the beginning. To fulfill this interest, she carried out her PhD studies in Prof. Graziano Martello’s lab at the University of Padova. Her research examined the molecular control of human embryonic development using human pluripotent stem cells (hPSCs). In particular, she developed an improved methodology to increase the efficiency of converting somatic cells into hPSCs using an innovative microfluidics system and she identified new regulators of pluripotency and morphogenesis. Towards the end of her PhD studies, she became captivated by the development of the placenta. She therefore developed a method to convert iPSCs to trophoblast stem cells in an efficient and rapid manner. To pursue her interests in human development and gene regulation, she joined Peter Rugg-Gunn’s team at the Babraham Institute in 2021. Here, she has developed new approaches to study human postimplantation development. Supported by a Leverhulme Early Career Fellowship, her research focuses on the epigenetic regulation of human trophoblast development.

Irene Zorzian

Dr Hongmei Wang is a professor at the State Key Laboratory of Stem Cell and Reproductive Biology (SRLab), Institute of Zoology (IOZ), Chinese Academy of Sciences (CAS), and the director of SRLab. She is also the chairman of the Chinese Society of Reproductive Biology. She received her Bachelor’s (1995) and Master’s (1998) degrees in Cell Biology from Beijing Normal University and her Ph.D. degree (2002) in Reproductive Biology from IOZ. Hongmei had her postdoctoral training (2003-2005) at the Ottawa Health Research Institute, University of Ottawa. She joined SRLab in 2006. Hongmei Wang and her research team have dedicated themselves using multiple models including human, non-human primate and mouse embryos and extraembryonic tissues, as well as stem cell-based embryo models and organoids to decipher the major events and mechanisms of early embryo development and placentation and the correlation between the errors in embryonic and placental development and the onset of birth defects or gestational related diseases.

Dr Laurent David obtained his PhD degree in 2007 in Molecular and Cellular Biology, in Grenoble, working on BMP signaling in Angiogenesis. He went as post-doctoral fellow in Pr Jeffrey Wrana lab, in Toronto, where he started to work on mechanisms of reprogramming. He was hired as director of the iPSc core facility of Nantes in 2012 and associate professor in Nantes Med School in 2013.

His scientific focus is programming (from fertilization to embryo) and reprogramming (from a somatic cell to pluripotent and trophoblast stem cells).

Laurent David

Dr Mana Parast is a physician-scientist and Professor in the Department of Pathology and member of the Sanford Consortium for Regenerative Medicine at University of California San Diego. She is the Director of Perinatal Pathology, and co-Director of the Center for Perinatal Discovery, a focal point for clinical, translational, and basic research surrounding the placenta at UC San Diego.

Dr. Parast has led a continuously-funded research program focused on placental development and adverse pregnancy/neonatal outcomes at UC San Diego since 2008. Her research ranges from placental pathology in the setting of adverse pregnancy outcomes, to the modeling of the human placenta using primary and pluripotent stem cells.

Mana Parast

Dr Margherita Yayoi Turco is a Group Leader at the Friedrich Miescher Institute for Biomedical Research in Basel, Switzerland. The research focus of her lab is to understand how the human placenta develops and how this process is influenced by the maternal uterine environment. Her interest in cell fate decisions and embryonic development began during her studies in Biotechnology at the University of Bologna, where she investigated the role of endogenous cannabinoid signalling in pre-implantation embryos. During her PhD in Molecular Medicine at the University of Milano and European Institute of Oncology, she explored the role of adaptor molecules in development and cancer using several stem cell models. Margherita then joined the Centre for Trophoblast Research as a postdoctoral fellow under the supervision of Graham Burton, Myriam Hemberger and Ashley Moffett. During this time, she pioneered the establishment of tissue-derived organoid systems of human trophoblast and endometrium. She was awarded the intra-European Marie-Curie and Royal Society Dorothy Hodgkin fellowships and the Royal Society Dorothy Hodgkin Science Award followed by the ERC Starting Grant to start her own lab. Her team is now using these organoid systems combined with imaging, gene editing, single cell technologies and bioengineering approaches to uncover the maternal-fetal interactions critical for a successful pregnancy.

Margherita Turco

Dr Hongmei Wang

Hongmei Wang

Laurent David

Mana Parast

Margherita Turco
Dr. Martin Knöfler is a biochemist and Associate Professor at the Department of Obstetrics and Gynecology, Medical University of Vienna, Austria. He is principal investigator and scientific coordinator of the Reproductive Biology Unit of the department and was a former editor of the scientific journal Placenta. His research interests include molecular mechanisms, signalling pathways and key regulatory factors controlling human placental development, trophoblast stem cells expansion and differentiation of trophoblast subtypes. Moreover, his team aims unravelling critical steps of endothelial development, decidualization, the trophoblast-decidual cross-talk as well as placental pathologies with abnormal trophoblast function. The group of Martin Knöfler was the first publishing 3-dimensional trophoblast organoids from the human placenta. His investigations resulted in over 140 published articles including peer-reviewed manuscripts, book chapters and invited reviews.

Dr. Thorold Theunissen grew up in the Netherlands and received his A.B. in biology from Harvard in 2007. He became interested in stem cells and developmental biology during his undergraduate work in the laboratories of Dr. Christine Mummery (Hubrecht Institute) and Dr. Stuart Orkin (Harvard Medical School). He completed his graduate studies in Dr. José Silva’s laboratory at the University of Cambridge in 2011. His doctoral thesis focused on the role of the homeodomain transcription factor Nanog in epigenetic reprogramming. As a Sir Henry Wellcome Postdoctoral Fellow in Dr. Rudolf Jaenisch’s laboratory at the Whitehead Institute/MIT, Thor developed methods to isolate naive human pluripotent stem cells. He joined the Department of Developmental Biology at Washington University School of Medicine as Assistant Professor in 2017 and was promoted to Associate Professor in 2023. His laboratory studies the molecular basis of pluripotency, the mechanisms of trophoblast development, and the generation of stem-cell-based embryo models. He is a recipient of the NIH Director’s New Innovator Award (DP2), the Edward Mallinckrodt, Jr. New Investigator Award, and the Shilpy Foundation’s Program for Innovation in Stem Cell Science Award. The Theunissen lab is affiliated with the Center of Regenerative Medicine and the Center for Women’s Health Engineering at WashU. Thor is a member of the Advisory Board of Cell Stem Cell and the Early Career Editorial Board of Stem Cell Reports.

Dr. Thorsten Boroviak originates from Austria, where he studied Molecular Biology at the University of Vienna. After completion of his master’s thesis in 2007, he was awarded a Phd-fellowship at the University of Sheffield to work on neuronal differentiation of mouse embryonic stem cells. Following his passion for pluripotency and embryonic development, he subsequently joined the laboratories of Prof. Austin Smith and Prof. Jennifer Nichols in 2010. His early postdoctoral research addressed the relationship of pluripotent embryonic stem cells to the early embryo. Thorsten provided transcriptional and functional evidence that the closest in vivo counterpart of mouse embryonic stem cells is the preimplantation epiblast. Between 2010 to 2015, he pioneered genome-wide comparison of mouse to non-human primate development by lineage-specific RNA-seq, which identified a primate specific role for WNT signalling during early lineage specification. In 2017, he was awarded a Sir Henry Dale Fellowship to start his own group – the Laboratory for Primate Embryogenesis – at the Department of Physiology, Development and Neuroscience at the University of Cambridge. Thorsten is a member of the Cambridge Stem Cell Institute, the Centre for Trophoblast Research, the Anne McLaren Trust Fund and fellow of Darwin College.

Dr. Yasuhiro Takashima, a graduate of Kobe University School of Medicine, transitioned from internal medicine practice to research. He honed his expertise at Kobe University Graduate School under Prof. Masato Kasuga and at RIKEN under the guidance of Prof. Shin-Ichi Nishikawa, focusing on adipocytes and mesenchymal stem cells using mouse embryonic stem cells. In 2007, he earned his Ph.D. and embarked on an eight-year scientific journey at the University of Cambridge Stem Cell Institute (Prof. Austin Smith Lab) as a Herchel Smith Post-doc fellow and Hughes Hall senior member, making significant contributions like the establishment of naive human pluripotent stem cells. Since 2015, Dr. Takashima has led a research lab at the Center for IPS Cell Research and Application (CIRA), Kyoto University. His work aims to regulate stem cells for the promotion of human health, with a particular focus on early human development and regenerative medicine using pluripotent stem cells and tissue stem cells.

Dr. Alexander G. Beristain is an Assistant Professor in the Division of Maternal Fetal Medicine. He received his Ph.D. (Reproductive and Developmental Sciences) from UBC Dept. of Obst/Gyn in 2007, and completed a postdoctoral fellowship with Dr. Rama Khokha at the Ontario Cancer Institute in 2012. He holds a New Investigator research grant from Sick Kids Foundation and John R Evans Leaders Award from the Canadian Foundation for Innovation. He is also a Principal Investigator on research grants from CIHR, NSERC and BCCHR as well as a Co Investigator on a NIH grant with Wendy Robinson. His lab investigates both the cellular and molecular processes that direct trophoblast cell biology in early placental development.

Dr Yonatan Stelzer is the incumbent of the Louis and Ida Rich Career Development Chair at the Weizmann Institute of Science. Yonatan received his PhD from the Hebrew University of Jerusalem Israel under the supervision of Prof. Nissim Benvenisty. In 2014, Yonatan joined the laboratory of Prof. Rudolf Jaenisch at the Whitehead Institute of MIT as a postdoctoral fellow. He established his independent lab at the Weizmann Institute in 2017. His lab synthesizes expertise and ideas from stem cell and developmental biology, epigenetics, computational modeling, and single-cell epigenomics, working on mammalian models from mouse to rabbit, to understand how embryonic cells diversify and specialize.

Dr. Alexander G. Beristain is an Assistant Professor in the Division of Maternal Fetal Medicine. He received his Ph.D. (Reproductive and Developmental Sciences) from UBC Dept. of Obst/Gyn in 2007, and completed a postdoctoral fellowship with Dr. Rama Khokha at the Ontario Cancer Institute in 2012. He holds a New Investigator research grant from Sick Kids Foundation and John R Evans Leaders Award from the Canadian Foundation for Innovation. He is also a Principal Investigator on research grants from CIHR, NSERC and BCCHR as well as a Co Investigator on a NIH grant with Wendy Robinson. His lab investigates both the cellular and molecular processes that direct trophoblast cell biology in early placental development.

Professor Ashley Moffett qualified in medicine from the University of Cambridge and worked as a physician before training as a reproductive pathologist in The Rosie Maternity Hospital in Cambridge. For the last 30 years she has worked on the interactions between maternal uterine cells and placental trophoblast cells that determine placentation and reproductive outcome in humans. She is Emeritus Professor of Reproductive Immunology in the Department of Pathology in Cambridge.

Awards and Honors:
- Yonatan Stelzer received a Sir Henry Dale Fellowship to start his own group – the Laboratory for Primate Embryogenesis – at the Department of Physiology, Development and Neuroscience at the University of Cambridge.
- The Theunissen lab is affiliated with the Center of Regenerative Medicine and the Center for Women’s Health Engineering at WashU.
- Dr. Martin Knöfler was a recipient of the NIH Director’s New Innovator Award (DP2), the Edward Mallinckrodt, Jr. New Investigator Award, and the Shilpy Foundation’s Program for Innovation in Stem Cell Science Award.
- Dr. Thorsten Boroviak provided transcriptional and functional evidence that the closest in vivo counterpart of mouse embryonic stem cells is the preimplantation epiblast.
- Dr. Yasuhiro Takashima made significant contributions like the establishment of naive human pluripotent stem cells.
- Dr. Alexander G. Beristain holds a New Investigator research grant from Sick Kids Foundation and John R Evans Leaders Award from the Canadian Foundation for Innovation.

Panel chairs

- Ashley Moffett
- Alexander Beristain
- Yonatan Stelzer
Logistics
The CTR Annual Meeting will be held in Churchill College, Cambridge (Storey’s Way, Cambridge CB3 0DS) and online.

Scientific sessions will take place in the Wolfson Hall (#4). During the breaks, refreshments will be served in the Main Concourse and adjoining buttery (#1), where conference posters will be on display. The conference dinner and conference lunch will be held in the first floor Dining Room (#1).

To participate in interactive Q&A, please join the CTR Annual Meeting Slido with the code #Trophoblast24 on Slido.com or here: https://app.sli.do/event/nc2Zn76sZ7dV2F7JWaQ6zV.

Accessibility
There are four dedicated disabled parking spaces available for the use of visitors and members of the College with disabilities. Additional parking spaces can also be reserved so please let us know in advance if you require a space allocated.

Churchill College site is generally level and accessible, with ramps to most areas, including the main entrance. There is a lift located in the main concourse for access to the first floor, where the dining hall is located. There is also a lift in the Wolfson Hoyer for easy access to the Wolfson Hall auditorium. The Wolfson Hall toilets are located on the ground floor. The nearest wheelchair accessible toilet is on the main concourse.

Wolfson Hall is equipped with a hearing loop. For best results guests are advised to use the outer seating house left and right. For online attendees, the Zoom will include an option to have subtitles.

Full floor plans and site access information are available online: https://www.chu.cam.ac.uk/about/accessibility/
Sustainability at Churchill College

• **Travel:** Please consider sustainability when making your travel plans. There is extensive bike parking available to the right of the main College entrance along Churchill road, and 15 electric car charging points available on-site. There is also a bus stop at the end of Storey’s Way, which is well-served by the Universal bus that connects to the train station. Cambridge also offers several Park & Ride options around the city.

• **Water refill:** Please consider bringing a re-usable water bottle to make use of water refill stations.

• **Waste:** To reduce food waste, please note that catering staff will put out food as it is needed and top up available food as it is eaten, rather than putting it all out at once. They will also clear away uneaten food swiftly after meals, as this means leftover food can be saved from the bin as it is safe to eat. None of the waste generated on site goes to landfill, as it is all recycled or used to generate power.

• **Catering:** Churchill College tracks the carbon footprints of the meals it serves using software to calculate the average carbon content per portion, and display this information to encourage diners to consider carbon in their food choices.

For more about Churchill College sustainability visit https://www.chu.cam.ac.uk/about/sustainability/

For more on train options visit https://www.thetrainline.com/

To find about Park and Ride https://cambridgeparkandride.info/

CTR Commitments to Sustainability

The CTR does not print programmes, and we encourage delegates to access the full programme in a digital format.

Name badges issued at registration are reused and will be used again so please hand them in on your departure.

The CTR Annual Meeting is hybrid, giving international attendees the option to join the conference online.

Centre for Trophoblast Research (CTR)

www.trophoblast.cam.ac.uk

The CTR was founded in 2007 to promote scientific study of the placenta and maternal-fetal interactions during pregnancy. It brings together 30 Principal Investigators, many of whom are recognized international experts in their fields. The CTR was one of the University of Cambridge’s first inter-school initiatives, bridging research trophoblast-related research across Cambridge in the School of Biological Sciences (Departments of Pathology, Genetics, and Physiology, Development and Neuroscience), School of Clinical Medicine (Institute of Metabolic Science, Medical Research Council Epidemiology Unit and Department of Obstetrics & Gynaecology) and affiliated institutes (Gurdon, Sanger, Babraham and the Cambridge Stem Cell Institutes). CTR members are united by a mission to understand normal placental development and the mechanisms leading to common placenta-related complications of fertility and pregnancy.

Join us!

Next Generation Fellowship

www.trophoblast.cam.ac.uk/ngf-overview

Application deadline: 31 January 2025

The CTR has an established highly-successful program to fund and mentor Next Generation Research Fellows. Next Generation Fellowships are aimed at promoting the careers of high-calibre individuals pursuing innovative research falling within the remit of the Centre. The fellowships are highly flexible to suit individual needs and enable the postholder to develop as an independent researcher. Holders are expected, and will be supported, to apply for Research Fellowship/Career Development Awards from research councils or other funders, or a faculty position during their tenure.

The Next Generation Fellowships are a springboard to a long and successful career in the field of placental and reproductive biology. Our Next Generation Fellows have moved on to prestigious positions such as group leaders in outstanding research centres (University of Cambridge, Francis Crick Institute in London, Blizzard Institute and Queen Mary University, Medical University of Vienna).

The CTR accepts applications from highly qualified applicants of all nationalities and will sponsor visa applications. Candidates should hold a PhD and have a high-quality publication track record in academic journals or equivalent. Appointments are made for a period of 3 years and includes a research consumables/equipment budget of up to £20,000 per annum & travel support up to £750.

Placental Biology Course

https://www.trophoblast.cam.ac.uk/placentalbiologycourse

Bursary application deadline: 8 July 2024

Course dates: 9 - 13 September 2024

Registration is open now for our virtual Placental Biology Course! This online course is aimed at students, post-docs, established researchers, medical & veterinary healthcare professionals and industry colleagues interested in cutting-edge placental biology and research. The 2024 course will run online with updated course content around four key themes: Pre- to peri-implantation development, Establishment of placenta, Placental pathology, and Physiology and metabolism. A small number of full or partial bursaries/scholarships will be available to eligible candidates based on need.
Who we are

We are The Company of Biologists

The Company of Biologists is a not-for-profit publishing organisation dedicated to supporting and inspiring the biological community. We are run by distinguished practising scientists. We exist to profit science, not shareholders. We inspire new thinking and support the worldwide community of biologists.

We do this by publishing leading peer-reviewed journals, facilitating scientific meetings and communities, providing travel grants for young researchers and by supporting societies and events.

Development
journals.biologists.com/dev

Journal of Cell Science
journals.biologists.com/jcs

Journal of Experimental Biology
journals.biologists.com/jeb

Disease Models & Mechanisms
journals.biologists.com/dmm

Biology Open
journals.biologists.com/bio

For subscriptions and consortia sales email subscriptions@biologists.com

For more information please visit our website biologists.com

Visit our website www.ferring.com, or contact us at: ExternallInnovation@ferring.com

At Ferring, we advance innovation to improve patient lives

We collaborate with partners to discover novel therapeutics and solutions, advance research and cultivate a greater understanding of underserved patient groups.

We are dedicated to our partners in seeing our joint vision come to fruition.

We have the right capabilities, people, and expertise to ensure success.

We make things simple by being transparent, agile, and respectful.
We thank Ferring Pharmaceuticals for their support as Gold Sponsor for the 2024 CTR Annual Meeting. https://www.ferring.com/

We thank the Company of Biologists for their support of the 2024 CTR Annual Meeting through the Scientific Meeting and Sustainable Conferencing funds. https://www.biologists.com/